VTAC calculator: Guidance note for determining T_{γ} values The surface damage component of the VTAC calculator allows users to either select the vehicle characteristics (primary yaw stiffness and vehicle weight) from a pre-determined list or to enter values of $T\gamma$ which have been derived for that particular vehicle. Recently, some users have raised questions regarding the methodology, so this guidance note presents an update to the original instruction sheet which accompanied the VTAC calculator spreadsheet. #### Ty definition The contact patch frictional energy, T_{γ} (or T-gamma), is calculated from lateral and longitudinal creep forces, T_{x} and T_{y} , and creepages, T_{x} and T_{y} , using the formula: $$T\gamma = T_x \gamma_x + T_y \gamma_y$$ and can usually be output direct from most vehicle dynamics software modelling packages. #### **Parameters for calculating T-gamma** Calculation of T_{γ} generally requires use of a multi-body vehicle dynamics simulator that is capable of calculating creepage and creep forces at the wheel rail interface. A series of standardised parameters for these simulations is presented in UK NR Report No. 08-002 "Methodology to Calculate Variable Usage Charges for Control Period 4" published in March 2008. Since the publication of that report an updated version of the Vampire vehicle dynamics software has been issued which changes the way that T_{γ} is calculated: the calculation now includes the effect of 'spin creep' in the calculation, which can have some effect on the calculated magnitude of T_{γ} compared with earlier methodologies. Since Vampire was used to calculate the reference values of T_{γ} used as input to the VTAC calculator, and has been used by many users to determine inputs to the VTAC calculator, this guidance note has been updated to reflect these changes and the recommended methodology for determining T_{γ} . #### Simulation condition parameters - It is recommended that Vampire 5.0 be used for the simulations. Later versions of Vampire (or other simulation packages) include the contribution of spin creep in the T_γ calculation, which can give higher predicted values of T_γ which are out of line with the reference values in the calculator - If later versions of **Vampire** than **5.0** are used then it is recommended that the form of the "*output" section of the ".run" file given in the - sample run file in Appendix 2 should be used: this will determine $T\gamma$ without the contribution of spin creep. - If simulation packages other than Vampire are used then it is suggested that contact with a member of V/T SIC PPG is made to discuss any differences between the results from the two simulation packages: contact details for PPG are supplied at the end of this document. - Calculations are to be made on right-hand curves - Track irregularity files are not used: the analysis should be for the vehicle under steady-state conditions. The track file should consist of an entry transition followed by a section of constant radius and constant cant of at least 350 m length. The Tγ values should be determined as the average of the vehicle running over at least 250m of track on the constant radius curve. The start of the track section over which the average is taken should be at least 100m after the end of the entry transition into the curve to allow any transient effects to be sufficiently damped. #### Cant deficiency - For all <u>passenger vehicles</u> (except tilting trains) simulations should be run at a cant deficiency of 40 mm - For <u>freight vehicles not limited to 45 mph</u> simulations should be run at **balance speed** - For <u>freight vehicles limited to 45 mph</u> simulations should be run at **20 mm cant excess** #### Coefficient of friction - All contact points on the left (high) rail except the gauge face use a coefficient of friction of 0.4 - For the gauge face of the left (high) rail use a coefficient of friction of 0.2 - All contact points on the right (low) rail use a coefficient of friction of 0.45 #### Curve radii Calculations should be carried out for the vehicle running over each of the 15 curve radii shown in Table 1. Table 1: Curve radii to include in simulations | Curve radii (m) | | | | | | | | |-----------------|------|--------|--|--|--|--|--| | 200 | 1200 | 3000 | | | | | | | 400 | 1400 | 4000 | | | | | | | 600 | 1800 | 6000 | | | | | | | 800 | 2200 | 8000 | | | | | | | 1000 | 2600 | 10,000 | | | | | | #### Wheel and rail profiles For the analysis of passenger vehicles with P8 wheels a standard Vampire contact file (" $F_mod_L_on_0-750-H_type2.con$ ") is available, and is recommended for $T\gamma$ studies. A listing of the ".con" file is given in Appendix 1. All wheel/rail contact data should be generated assuming a track gauge of 1435mm and a wheelset back-to-back spacing of 1360mm. It is important that the flange contact 'L' and 'R' markers in the contact data files are not edited or moved within the contact file. For the analysis of freight vehicles measured part-worn wheel and rail profiles should be used in the calculations. The wheel profiles which should be used are shown in Table 2. Separate rail profiles are used for left and right rails as follows: Left (high) rail: 0-750-H.ban Right (low) rail: 0-750-L.ban **Table 2: Wheel profile names** | Profile type | Left (high rail)
wheel profile | Right (low rail)
wheel profile | | | | | |--------------|-----------------------------------|-----------------------------------|--|--|--|--| | Worn P5 | P5_20001009-0131.whl | P5_20001009-0131.whl | | | | | | Worn P10 | P10_20040826-0061.whl | P10_20040826-0061.whl | | | | | #### **Outputs** The output should be the average value of $T\gamma$, determined as described in the previous sections, from the high rail for each wheelset of a bogie for the vehicle running on each curve. If there are different results from the leading and trailing bogies, the values should be chosen from the bogie which gives the highest $T\gamma$ values. If there are two points of contact on the high rail (tread and flange) choose the one with the highest $T\gamma$. #### Vampire input files All the required input files are available from Network Rail PPG. These include sample track geometry files, ".run" files containing the appropriate speed and coefficients of friction and output channels, and wheel/rail contact data files. Listings of a typical Vampire ".run" file is given in Appendix 2, and Appendix 3 details curvature, cant and speed combinations which have been used to obtain the appropriate cant deficiencies on each curve. #### **PPG** contact For copies of the track or run files previously used in these analyses, or queries regarding the procedure for $T\gamma$ calculation please contact: Mark Burstow Principal Vehicle Track Dynamics Engineer Network Rail 40 Melton Street London, NW1 2EE 0207 557 8329 -or- 07920 856556 mark.burstow@networkrail.co.uk ### Appendix 1 Listing of Vampire contact file, "F_mod_L_on_0-750-H_type2.con", for use with passenger vehicles with P8 wheels ``` VAMPIRE Version 5.01.0003 (July 2006) CONTACT DATA GENERATION PROGRAM VAMPIRE WHEEL/RAIL CONTACT DATA *WHEEL F_mod_L.whl and F_mod_R.whl FLANGEBACK 1360.00 mm 850.00 mm DIAMETER YAW ANGLE 0.00 mrad *RAIL 0-750-H.ban and 0-750-L.ban TRACK GAUGE 1435.00 mm *AXLELOAD 150.00 KN * * *LATERAL OFFSET ** YREL DRL DRR DELTL DELTR CONYL CONYR CONXL CONXR CONZL CONZR AREAL AREAR AOBL AOBR RHOL RHOR ROLL 22.183 56.96 -0.24 -704.28 779.32 0.00 13.15 -0.10 20.95 50.57 21.707 3.980 0.023 0.185 9.043 -15.00 -0.689 0.00 0.196 -14.50 21.999 -0.688 61.16 -0.24 -704.39 778.82 0.00 0.00 12.32 -0.09 19.58 51.87 23.874 3.813 0.019 8.481 11.46 -14.00 21.197 -0.687 61.57 -0.24 -704.88 778.32 0.00 0.00 -0.09 22.31 55.23 22.210 3.485 0.024 0.222 7.902 61.29 2.965 -13.50 20.444 -0.680 62.46 -0.41 -705.28 777.79 0.00 0.00 10.48 -0.09 22.35 24.224 0.023 0.274 7.239 -13.00 20.222 -0.680 -0.41 - 705.39 0.00 9.40 -0.09 24.34 64.88 22.045 2.701 0.028 0.309 6.509 66.14 0.00 -0.37 -705.78 22.316 -12.50 19.341 -0.679 67.51 776.76 0.00 0.00 8.22 -0.09 25.95 69.25 2.439 0.031 0.351 5.718 -12.00 18.589 -0.677 69.18 -0.41 -706.07 776.30 0.00 0.00 6.88 -0.08 36.38 66.44 18.222 2.609 0.054 0.323 4.811 -11.50 18.589 -0.679 70.95 -0.41 -706.07 775.80 0.00 0.00 5.44 -0.09 35.43 69.39 18.603 2.431 0.052 0.352 3.843 -0.674 -0.40 -706.65 775.23 3.95 -0.08 43.24 -11.00 16.919 71.01 0.00 0.00 69.41 16.162 2.430 0.073 0.353 2.830 16.830 72.74 47.65 14.456 -10.50 -0.676 -0.43 -706.68 774.79 0.00 0.00 2.35 -0.08 68.10 2.509 0.089 0.339 1.758 35.23 -0.43 -712.67 69.95 -10.10 6.820 -0.676 774.39 0.00 0.00 1.09 -0.08 69.06 3.039 2.451 0.332 0.349 0.899 L -10.00 6.755 -0.676 34.82 -0.43 - 712.77 0.00 0.00 1.02 -0.08 58.02 69.06 4.005 2.451 0.227 0.349 0.855 -9.90 2.992 -0.676 13.12 -0.43 -722.87 774.19 0.00 0.00 0.99 -0.08 99.29 70.45 1.359 2.367 0.680 0.364 0.827 -9.50 2.286 -0.679 10.46 -0.40 -726.36 773.79 0.00 0.00 0.91 -0.09 92.41 71.53 1.530 2.314 0.600 0.374 0.775 -0.683 0.00 -9.00 2.489 11.65 -0.39 -725.31 773.29 0.00 0.81 -0.09 91.55 72.03 1.559 2.288 0.590 0.379 0.711 -8.50 1.805 -0.681 9.10 -0.39 -729.17 772.79 0.00 0.00 0.73 -0.09 85.70 73.18 1.735 2.230 0.524 0.391 0.653 1.805 -0.681 9.47 -0.39 -729.17 772.29 0.00 85.29 72.74 1.749 2.253 0.520 0.386 -8.00 0.00 0.65 -0.09 0.599 -7.50 1.555 -0.682 8.79 -0.39 -730.74 771.79 0.00 0.00 0.57 -0.09 86.79 75.15 1.696 2.129 0.536 0.412 0.547 1.472 -0.684 8.69 -0.39 -731.29 0.00 0.00 0.49 -0.09 83.03 69.57 1.825 2.420 0.496 0.354 0.498 ``` R | | -6.50 | 1.217 | -0.682 | 7.93 | -0.38 -733.04 | 770.66 | 0.00 | 0.00 | 0.42 | -0.09 | 89.50 | 71.53 | 1.597 | 2.313 | 0.569 | 0.374 | 0.449 | |---|-------|--------|--------|-------|---------------|--------|------|------|-------|-------|--------|-------|-------|--------|-------|-------|--------| | | -6.00 | 1.086 | -0.688 | 7.62 | -0.43 -734.06 | 770.29 | 0.00 | 0.00 | 0.36 | -0.09 | 93.65 | 75.02 | 1.472 | 2.136 | 0.616 | 0.411 | 0.410 | | | -5.50 | 0.882 | -0.673 | 6.96 | -0.12 -735.68 | 768.84 | 0.00 | 0.00 | 0.30 | -0.09 | 98.12 | 76.24 | 1.349 | 2.072 | 0.668 | 0.425 | 0.371 | | | -5.00 | 0.732 | -0.500 | 6.71 | 1.74 -736.98 | 757.31 | 0.00 | 0.00 | 0.24 | -0.07 | 101.26 | 68.87 | 1.266 | 2.464 | 0.707 | 0.347 | 0.319 | | | -4.50 | 0.321 | -0.494 | 4.86 | 1.68 -741.10 | 757.09 | 0.00 | 0.00 | 0.19 | -0.06 | 99.79 | 65.26 | 1.297 | 2.680 | 0.689 | 0.312 | 0.274 | | | -4.00 | 0.321 | -0.500 | 5.04 | 1.57 -741.10 | 757.31 | 0.00 | 0.00 | 0.14 | -0.05 | 101.68 | 71.87 | 1.251 | 2.297 | 0.712 | 0.377 | 0.234 | | | -3.50 | 0.321 | -0.493 | 5.28 | 1.51 -741.10 | 757.06 | 0.00 | 0.00 | 0.09 | -0.04 | 97.80 | 71.00 | 1.348 | 2.341 | 0.665 | 0.369 | 0.197 | | | -3.00 | 0.055 | -0.496 | 4.18 | 1.40 -744.20 | 757.16 | 0.00 | 0.00 | 0.06 | -0.02 | 100.61 | 74.43 | 1.274 | 2.168 | 0.699 | 0.404 | 0.164 | | | -2.50 | 0.018 | -0.493 | 4.17 | 1.35 -744.70 | 757.06 | 0.00 | 0.00 | 0.02 | -0.01 | 101.39 | 78.53 | 1.255 | 1.978 | 0.709 | 0.448 | 0.134 | | | -2.00 | -0.017 | 0.478 | 4.17 | 6.21 -745.20 | 739.79 | 0.00 | 0.00 | -0.02 | 0.01 | 102.94 | 53.61 | 1.222 | 3.651 | 0.726 | 0.209 | 0.092 | | | -1.50 | -0.054 | 0.501 | 4.18 | 6.05 -745.70 | 739.55 | 0.00 | 0.00 | -0.05 | 0.06 | 102.23 | 54.89 | 1.237 | 3.528 | 0.718 | 0.219 | 0.038 | | | -1.00 | -0.084 | 0.478 | 4.17 | 5.59 -746.20 | 739.79 | 0.00 | 0.00 | -0.08 | 0.10 | 101.37 | 67.02 | 1.255 | 2.586 | 0.709 | 0.328 | -0.013 | | | -0.50 | -0.315 | 0.501 | 2.71 | 5.44 -750.46 | 739.55 | 0.00 | 0.00 | -0.11 | 0.15 | 105.66 | 67.44 | 1.150 | 2.559 | 0.758 | 0.332 | -0.065 | | | 0.00 | -0.344 | 0.501 | 2.69 | 5.15 -750.96 | 739.55 | 0.00 | 0.00 | -0.14 | 0.19 | 104.14 | 74.37 | 1.185 | 2.179 | 0.740 | 0.403 | -0.113 | | | 0.50 | -0.427 | 0.910 | 2.23 | 7.61 -753.01 | 735.41 | 0.00 | 0.00 | -0.16 | 0.24 | 105.68 | 52.60 | 1.152 | 3.766 | 0.758 | 0.201 | -0.154 | | | 1.00 | -0.427 | 0.919 | 2.34 | 7.30 -753.01 | 735.33 | 0.00 | 0.00 | -0.18 | 0.30 | 110.45 | 58.31 | 1.057 | 3.227 | 0.813 | 0.248 | -0.205 | | | 1.50 | -0.460 | 1.002 | 2.14 | 7.44 -754.03 | 734.62 | 0.00 | 0.00 | -0.19 | 0.36 | 99.17 | 55.89 | 1.301 | 3.460 | 0.682 | 0.226 | -0.255 | | | 2.00 | -0.460 | 1.064 | 2.33 | 7.46 -754.03 | 734.10 | 0.00 | 0.00 | -0.21 | 0.42 | 102.34 | 56.68 | 1.225 | 3.389 | 0.720 | 0.233 | -0.307 | | | 2.50 | -0.656 | 1.160 | 0.44 | 7.70 -762.48 | 733.34 | 0.00 | 0.00 | -0.23 | 0.48 | 145.42 | 53.80 | 0.596 | 3.663 | 1.166 | 0.210 | -0.363 | | | 3.00 | -0.662 | 1.228 | 0.45 | 7.74 -762.98 | 732.81 | 0.00 | 0.00 | -0.24 | 0.55 | 141.49 | 54.46 | 0.633 | 3.603 | 1.132 | 0.215 | -0.410 | | | 3.50 | -0.634 | 1.294 | -0.86 | 7.74 -769.93 | 732.31 | 0.00 | 0.00 | -0.24 | 0.61 | 74.62 | 54.25 | 2.157 | 3.624 | 0.406 | 0.213 | -0.453 | | | 4.00 | -0.646 | 1.360 | -0.53 | 7.74 -768.45 | 731.81 | 0.00 | 0.00 | -0.23 | 0.68 | 95.88 | 56.51 | 1.388 | 3.416 | 0.644 | 0.231 | -0.495 | | | 4.50 | -0.634 | 1.432 | -0.68 | 7.74 -769.96 | 731.31 | 0.00 | 0.00 | -0.23 | 0.75 | 79.31 | 57.39 | 1.945 | 3.330 | 0.456 | 0.239 | -0.539 | | | 5.00 | -0.634 | 1.500 | -0.45 | 7.74 -769.93 | 730.81 | 0.00 | 0.00 | -0.23 | 0.82 | 84.08 | 56.08 | 1.756 | 3.460 | 0.508 | 0.227 | -0.584 | | | 5.50 | -0.634 | 1.571 | -0.51 | 7.82 -769.95 | 730.31 | 0.00 | 0.00 | -0.22 | 0.89 | 92.09 | 59.69 | 1.495 | 3.133 | 0.599 | 0.259 | -0.627 | | | 6.00 | -0.636 | 1.910 | -0.33 | 9.53 -769.68 | 728.22 | 0.00 | 0.00 | -0.22 | 0.97 | 96.17 | 65.38 | 1.381 | 2.722 | 0.647 | 0.312 | -0.679 | | | 6.50 | -0.634 | 2.315 | -0.21 | 11.63 -769.93 | 725.92 | 0.00 | 0.00 | -0.22 | 1.06 | 91.80 | 53.21 | 1.504 | 3.748 | 0.596 | 0.205 | -0.739 | | | 7.00 | -0.634 | 2.362 | -0.15 | 11.40 -770.16 | 725.65 | 0.00 | 0.00 | -0.22 | 1.15 | 92.31 | 60.95 | 1.489 | 3.066 | 0.602 | 0.269 | -0.798 | | | 7.50 | -0.636 | 2.504 | -0.14 | 11.83 -770.66 | 724.90 | 0.00 | 0.00 | -0.22 | 1.24 | 89.14 | 59.71 | 1.582 | 3.159 | 0.566 | 0.259 | -0.864 | | | 8.00 | -0.636 | 2.606 | 0.11 | 11.87 -769.68 | 724.37 | 0.00 | 0.00 | -0.21 | 1.34 | 92.29 | 62.36 | 1.490 | 2.975 | 0.601 | 0.281 | -0.925 | | | 8.50 | -0.634 | 2.710 | 0.20 | 11.89 -770.17 | 723.87 | 0.00 | 0.00 | -0.21 | 1.44 | 86.04 | 63.24 | 1.688 | 2.919 | 0.530 | 0.289 | -0.993 | | | 9.00 | -0.636 | 3.196 | 0.20 | 13.82 -770.67 | 721.79 | 0.00 | 0.00 | -0.21 | 1.56 | 83.80 | 77.33 | 1.766 | 2.118 | 0.505 | 0.431 | -1.076 | | | 9.10 | -0.637 | 5.697 | 0.20 | 28.61 -770.77 | 714.64 | 0.00 | 0.00 | -0.21 | 1.59 | 85.32 | 41.58 | 1.713 | 6.102 | 0.522 | 0.114 | -1.100 | | | 9.50 | -0.635 | 5.697 | 0.29 | 26.96 -769.81 | 714.64 | 0.00 | 0.00 | -0.21 | 1.79 | 87.59 | 45.53 | 1.633 | 5.212 | 0.548 | 0.141 | -1.232 | | | 9.70 | -0.634 | 6.644 | 0.31 | 34.21 -769.93 | 712.93 | 0.00 | 0.00 | -0.21 | 1.90 | 76.56 | 52.16 | 2.059 | 4.668 | 0.428 | 0.182 | -1.308 | | | 9.80 | -0.634 | 6.859 | 0.34 | 35.41 -769.93 | 712.62 | 0.00 | 0.00 | -0.21 | 1.97 | 76.56 | 56.79 | 2.059 | 4.169 | 0.428 | 0.216 | -1.354 | | | 9.90 | -0.634 | 12.024 | 0.37 | 68.92 -769.93 | 708.35 | 0.00 | 0.00 | -0.21 | 2.07 | 76.56 | 38.44 | 2.059 | 18.177 | 0.428 | 0.059 | -1.426 | | _ | 10.00 | -0.634 | 12.316 | 0.38 | 69.21 -769.99 | 708.25 | 0.00 | 0.00 | -0.21 | 2.36 | 76.56 | 29.23 | 2.059 | 23.548 | 0.428 | 0.036 | -1.624 | | | 10.10 | -0.634 | 12.619 | 0.38 | 69.21 -770.09 | 708.15 | 0.00 | 0.00 | -0.21 | 2.66 | 76.56 | 28.01 | 2.059 | 25.741 | 0.428 | 0.032 | -1.829 | | | 10.50 | -0.636 | 14.157 | 0.32 | 71.39 -770.70 | 707.66 | 0.00 | 0.00 | -0.21 | 3.96 | 78.66 | 25.20 | 1.972 | 27.579 | 0.449 | 0.026 | -2.708 | | | 11.00 | -0.637 | 15.910 | -0.31 | 71.68 -774.56 | 707.14 | 0.00 | 0.00 | -0.22 | 5.73 | 92.81 | 18.09 | 1.474 | 27.579 | 0.608 | 0.016 | -3.902 | | | 11.50 | -0.637 | 17.195 | -0.11 | 69.50 -774.56 | 706.69 | 0.00 | 0.00 | -0.22 | 7.24 | 86.64 | 19.59 | 1.667 | 27.579 | 0.537 | 0.018 | -4.923 | | | 12.00 | -0.641 | 18.522 | -0.27 | 68.19 -775.59 | 706.22 | 0.00 | 0.00 | -0.22 | 8.67 | 88.03 | 17.02 | 1.617 | 27.579 | 0.553 | 0.015 | -5.892 | | | 12.50 | -0.642 | 19.635 | -0.25 | 67.97 -775.67 | 705.74 | 0.00 | 0.00 | -0.22 | 9.88 | 88.06 | 18.97 | 1.616 | 27.579 | 0.554 | 0.017 | -6.707 | | | 13.00 | -0.639 | 20.496 | 0.14 | 64.89 -774.69 | 705.33 | 0.00 | 0.00 | -0.22 | 11.00 | 82.36 | 19.85 | 1.816 | 27.258 | 0.490 | 0.019 | -7.461 | | | 13.50 | -0.647 | 21.059 | -0.24 | 60.81 -776.87 | 705.04 | 0.00 | 0.00 | -0.23 | 11.98 | 81.09 | 19.21 | 1.870 | 26.617 | 0.475 | 0.018 | -8.129 | | | 14.00 | -0.649 | 21.490 | -0.23 | 57.84 -777.40 | 704.79 | 0.00 | 0.00 | -0.23 | 12.84 | 74.78 | 21.07 | 2.148 | 23.027 | 0.408 | 0.022 | -8.708 | | | 14.50 | -0.646 | 22.052 | 0.21 | 57.05 -776.20 | 704.42 | 0.00 | 0.00 | -0.22 | 13.65 | 78.70 | 19.29 | 1.971 | 22.646 | 0.449 | 0.019 | -9.253 | | | 15.00 | -0.647 | 22.133 | 0.14 | 54.55 -776.87 | 704.37 | 0.00 | 0.00 | -0.23 | 14.39 | 69.27 | 20.28 | 2.439 | 21.139 | 0.351 | 0.022 | -9.755 | ## Appendix 2 #### Listing of Vampire run file for use with T_{γ} simulations This listing does not use the $T\gamma$ output channel available in Vampire, but calculates $T\gamma$ from the creep forces and creepages directly. This is to ensure that the influence of spin creep is not included in the evaluation of $T\gamma$. ``` %insert run title here% UNITS VAMPIRE %insert vehicle file name here% *TRANSIENT 1000 0.0 SPEED %speed% 0.001 0.005 0.00 TRACKDESIGN %curve% *CREEP 0.45 8.00 0.45 0.45 0.20 0.40 0.45 NON-LINEAR PROFILE %contact% *OUTPUT Longitudinal creep force- wset1- L kN Longitudinal creep force- wset1- R kN CR01X Longitudinal creep force- wset1- F kN Longitudinal creep force- wset2- L kN CL02X Longitudinal creep force- wset2- R kN Longitudinal creep force- wset2- F CF02X Lateral creep force- wset1- {\tt L} kN CL01Y Lateral creep force- wset1- R CR01Y Lateral creep force- wset1- F kN CF01Y Lateral creep force- wset2- L kN CL02Y Lateral creep force- wset2- R kN CR02Y Lateral creep force- wset2- F kN CF02Y Wear number (no spin) - wset 1- L 1000*(ABS(CL01X*VL01X)+ABS(CL01Y*VL01Y)) Wear number (no spin) - wset 1- F 1000*(ABS(CF01X*VF01X)+ABS(CF01Y*VF01Y)) Wear number (no spin) - wset 2- L 1000*(ABS(CL02X*VL02X)+ABS(CL02Y*VL02Y)) Wear number (no spin) - wset 2- F 1000*(ABS(CF02X*VF02X)+ABS(CF02Y*VF02Y)) velocity SP ``` ## Appendix 3 Details of track files and vehicle speeds to attain the required cant deficiencies | Curve | Installed | Vehicle speed (m/s) | | | | | | | |--------|-----------|---------------------|-------------|-----------|--|--|--|--| | radius | cant | 40mm cant | Cant | 20mm cant | | | | | | (m) | (mm) | deficiency | equilibrium | excess | | | | | | 200 | 100 | 13.51 | 11.42 | 10.21 | | | | | | 400 | 100 | 19.11 | 16.15 | 14.44 | | | | | | 600 | 100 | 23.40 | 19.78 | 17.69 | | | | | | 800 | 100 | 27.02 | 22.84 | 20.42 | | | | | | 1000 | 100 | 30.21 | 25.53 | 22.84 | | | | | | 1200 | 100 | 33.10 | 27.97 | 25.02 | | | | | | 1400 | 100 | 35.74 | 30.21 | 27.02 | | | | | | 1800 | 100 | 40.53 | 34.25 | 30.64 | | | | | | 2200 | 75 | 40.61 | 32.80 | 28.08 | | | | | | 2600 | 50 | 39.05 | 29.11 | 22.55 | | | | | | 3000 | 30 | 37.00 | 24.22 | 13.98 | | | | | | 4000 | 25 | 41.17 | 25.53 | 11.42 | | | | | | 6000 | 10 | 44.22 | 19.78 | n/a | | | | | | 8000 | 10 | 51.06 | 22.84 | n/a | | | | | | 10,000 | 5 | 54.16 | 18.05 | n/a | | | | |